

Литьё цветных металлов

(перевод с немецкого)

Учебный курс MAGMAnonferrous (цветные сплавы)

Аахен, Маі 2013

Настоящий учебный материал предусмотрен программой обучения компанией МАGMA GmbH. Настоящий документ не может быть воспроизведён ни в какой форме как частично, так и полностью без письменного разрешения компании MAGMA GmbH. Логотипы MAGMASOFT® является защищённом на международном уровне товарный знак компании MAGMA GmbH. Логотипы MAGMA und MAGMA5 sowie MAGMAiron, MAGMAdisa, MAGMAlpdc, MAGMAhpdc и подобные им обозначения являются товарными знаками компании MAGMA GmbH. Все иные упомянутые в настоящем документе названия продуктов могут чвляться обозначением продукта и/или товарным знаком соответствующего предприятия.

Авторское право: © MAGMA GmbH 1989-2020. Все авторские права защищены.

MAGMA Gießereitechnologie GmbH
Kackertstraße 11
52072 Aachen
Deutschland

Tel.: +49 / 241 / 88 90 1- 0

Fax: +49 / 241 / 88 90 1- 60 Internet: www.magmasoft.de

E-Mail: mail@magmasoft.de

Оглавление

1	Введение	4
2	Описание модели	4
3	Применение	5
3.1	Химический состав	5
3.2	Запуск расчётов 'Consider Microstructure Aluminum"	7
	3.2.1 Процессы в постоянной форме	8
3.3	Настройка параметров ,Optimal Quality'	8
3.4	Вывод результатов	10
4	Результаты	11
4.1	Структурные свойства	11
4.2	Механические свойства	12
5	Примечания	13
6	Дополнительные возможности	13
6.1	Расчёт локальных fs-кривых как функции температуры	13
6.2	Расчёт локальных температур кристаллизации	16
7	Перечень иллюстраций	19
8	Kontakt	20

1 Введение

MAGMAnonferrous® является дополнительным модулем MAGMA⁵ Для гравитационного литья и литья под низким давлением и позволяет моделировать структуру и механические свойства алюминиевых сплавов.

2 Описание модели

Успех прогнозирование структуры и механических свойств зависит не только от условий литейного процесса и условий затвердевания, но и от состава сплава и обработки расплава (очистки и мелкозернистости).

Исходя из заданного химического состава используются фазовые диаграммы с целью оценки необходимой фазы. Динамика текущих фаз и зейгирование в локальных участках затвердевания определяют структуру сплава. Термофизические данные (доля твёрдой фазы, плотность, теплопроводность, теплоёмкость, скрытая теплота, температура плавления и кристаллизации) рассчитываются локально на основании показателей затвердевания (при затвердевании). Расчёты выполняются для каждого элемента сетки в каждый момент времени.

Модель используется только для доэвтектических и эвтектических сплавов. Процентное содержание соответствующих элементов сплава должно быть следующим:

6.5% < Si < 12.5%

Fe < 0.6%

Mg < 0.5%

Cu < 3.5%

Mn < 0.4%

3 Применение

3.1 Химический состав

Химический состав – информация из базы данных, необходимая для расчёта процесса затвердевания. Термофизические показатели из базы данных используются только при расчётах заполнения формы.

Пользователь имеет возможность включить химический состав в собственные данные и сохранить его в каталоге User-/ Projekt-Datenbank. Действуйте следующим образом:

- 1. Откройте базу данных MAGMA
- 2. В базе выберите Ваш User-/ Projekt-Datenbank
- 3. В меню Import выберите из базы MAGMA сплав, ближайший по составу Вашему (Рис. 1).

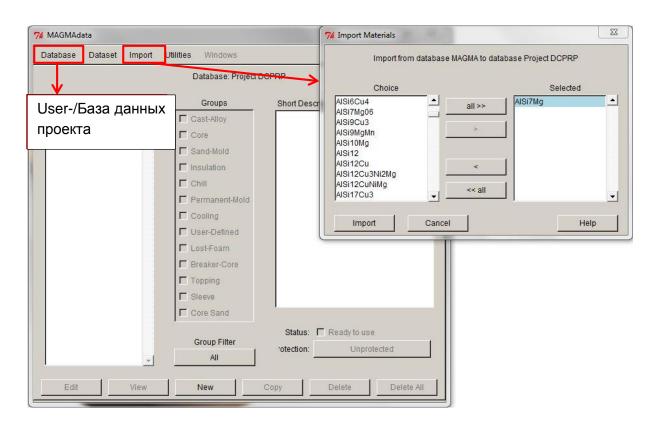


Рис. 1 Импорт химсостава сплава в собственную базу данных User-/ Projekt-Datenbank

4. Выбор сплава и изменение его химсостава.

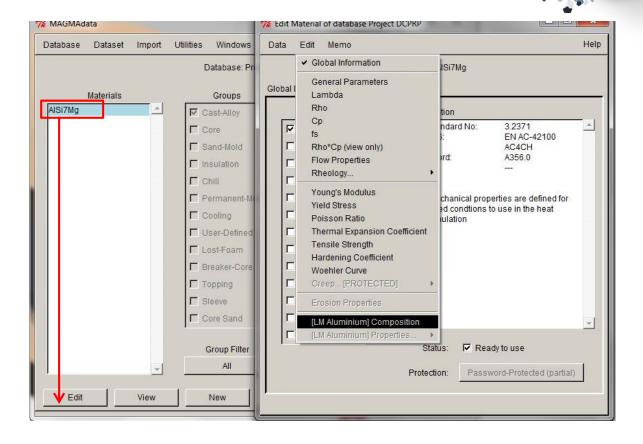


Рис 2 Изменение импортированных данных

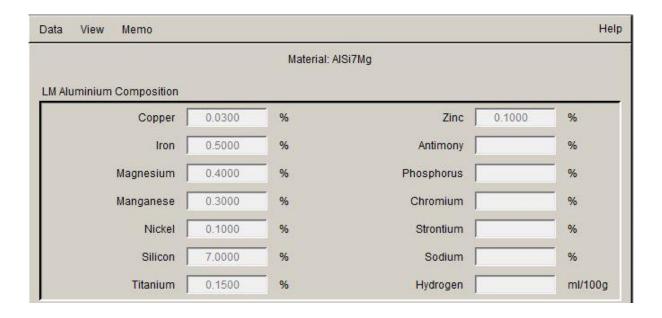


Рис. 3 Подбор составляющих сплава

При выборе материалов в процессоре определений можно использовать сохранённые данные.

Другая опция позволяет выбрать аналогичный сплав в базе данных MAGMA имизменить его состав непосредственно через интерфейс процессора определений. В этом случае химический состав имеет более высокий приоритет по сравнению с базой данных.

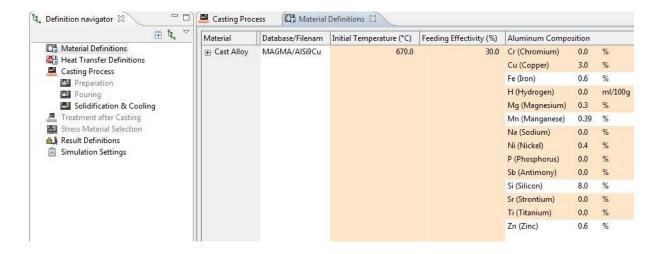


Рис. 4 Изменение химического состава непосредственно через интерфейс процессора определений

Данные из базы данных отображаются на светло-коричневом фоне. Элементы, доля которых в сплаве должна быть изменена, имеют белый фон (Рис. 4).

Общая доля элементов сплава (кроме Si, Cu, Mg) не должна превышать 2%. В случае несоблюдения заданных пропорций появляется предупреждение в окне ,Problems', и как следствие, механические свойства не могут быть рассчитаны.

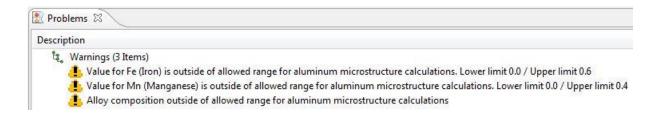


Рис. 5 Предупреждения в случае несоблюдения пропорций элементов сплава

3.2 Запуск расчётов 'Consider Microstructure Aluminum"

Для расчётов структуры и прогнозирования свойств изделия необходимо выбрать вид литья — гравитационное, соотв., под низким давлением, а также алюминиевый слав в качестве материала отливки.

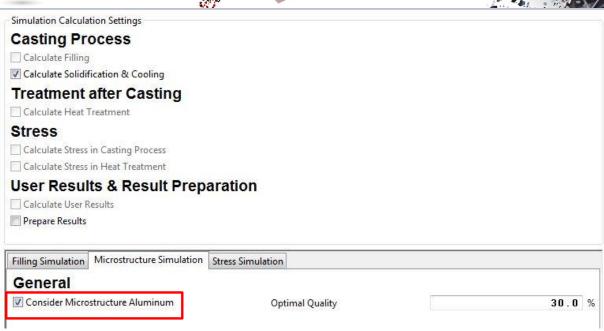


Рис. 6 Запуск расчёта структуры отливки

Если поставить галочку напротив ,Consider Microstructure Aluminium' (Рис. 6), активируется расчёт структуры.

3.2.1 Процессы в постоянной форме

Расчёт структуры занимает больше времени, чес стандартные расчёты. Для случая многочисленных процессов при литье в постоянную форму в целях экономии времени расчёт структуры выполняется только для рабочего цикла. Для циклов разогрева расчёт структуры не выполняется.

3.3 Настройка параметров ,Optimal Quality'

"Optimal Quality' представляет собой параметр, влияющий на расчёт механических свойств. Параметр должен находиться в пределах 0-100%. Значение по умолчанию находится около 30% и показывает, насколько расчётные механические свойства соответствуют реально достижимым.

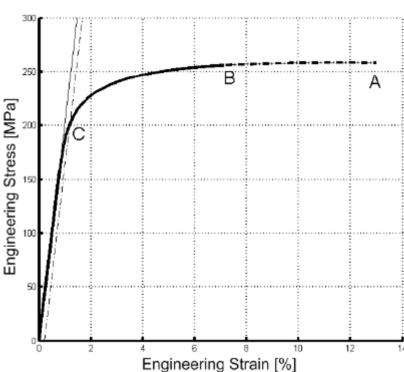


Рис. 7 Кривая напряжений при растяжении по одной оси

На рис. 7 изображена типовая кривая возникновения напряжений при растяжении.

Точка А соответствует максимальному растяжению.

Точка В, в которой пересекаются жирная и тонкая линии, соответствует пределу текучести. Максимальное значение напряжения на кривой растяжения соответствует пределу прочности на разрыв.

Параллельно тонкой кривой проходит пунктирная кривая и пересекает ось растяжения в значении 0.002. В точке пересечения пунктирной кривой с кривой напряжений при растяжении предел текучести составляет Rp0,2. Тонкая линия представляет собой прямую линию, проходящую под определённым углом модуля эластичности (,Young 's Modulus') к кривой напряжений при растяжении.

Вид кривой напряжений при растяжении может быть различным в зависимости от локальных условий охлаждения, структуры и наличия пористости в отливке.

Для определения структуры и механических свойств отливки были проведены эксперименты в лабораторных условиях (Заполнение формы с минимальной турбулентностью, направленное затвердевание). В условиях реального литья в силу повышенной турбулентности (и ненаправленного затвердевания) свойства отливки могут локально ухудшаться вследствие не учтённых при расчётах потенциальных ООО «ДиалСофт»

включений оксидов и микропористостей. Поэтому фактор возникновения подобывки явлений был учтён.

В случае, если прогнозируемые свойства изделия не совпадают с реальными, функцию ,Optimal Quality' можно настроить следующим образом:

- 1. Запустите моделирование со 100% параметров ,Optimal Quality'.
- 2. Сравните рассчитанное растяжение с экспериментальными показателями.
- 3. Соотношение обоих значений следует рассматривать как параметр ,Optimal Quality'. Например: При измеренном значении растяжения 6% и расчётном 10% соотношение 6% к 10% составит 0.6=60%. Это означает, что при факторе 'Optimal Quality' 60%, растяжение прогнозируется 6%, а не 10%, как при 100% ,Optimal Quality.

Коррекция фактора ,Optimal Quality' влияет не только на растяжение, но и на прочность на разрыв. Предел текучести обычно остаётся неизменным (см. рис. 7).

3.4 Вывод результатов

В процессоре определений в меню ,Result Definition' можно вывести рассчитанные в модуле MAGMAnonferrous результаты. По умолчанию выводятся все полученные результаты. Результаты распределяются по двум каталогам:

- ,Material Properties*
- ,Microstructure'

В каталоге ,Material Properties' отображаются механические свойства во время литья и после термообработки Тб. Каталог ,Microstructure' содержит результаты расчётов структуры.



Рис. 8 Вывод результатов

Если данные по химическому составу выходят за допустимые пределы, механические свойства не могут быть рассчитаны, и соответственно, выведены.

- 4 Результаты
- 4.1 Структурные свойства

,Eutectic Cell Size'

,Fraction of Al2Cu Phase'

,Fraction of AlFeSi Phase'

,Fraction of Eutectic Phase'

,Fraction of Mg2Si Phase'

,Fraction of Primary Phase'

,Grain Size⁴

,Secondary Dendrite Arm Spacing'

4.2 Механические свойства

,Tensile Strength F'

,Tensile Strength T6'

,Yield Strength F'

,Yield Strength T6'

,Elongation F'

,Elongation T6'

- * Параметры термообработки:
 - Диффузионный отжиг (обработка горячим раствором) в течение 6 час. при 525°C
 с содержанием магния, соотв., при 495°C для сплавов с содержанием меди 1-3,5%
 - − Закалка в воде при 50°C
 - ¬ Выдерживание в течение 8 час. приі 175°С
 - 0.5 мм/мин скорость растяжения

5 Примечания

Расчёт свойств выполняется после моделирования процесса затвердевания. Параметр ,Optimal Quality' не влияет на моделирование затвердевания и особенности структуры. Изменения претерпевают только упомянутые механические свойства.

Структура рассчитывается в интервале от температуры плавления до температуры кристаллизации. В случае, если в начале расчёта процесса затвердевания температура плавления была ниже нормы, выполняется дополнительный упрощённый расчёт для достижения температуры плавления.

Различия в химическом составе и различные локальные условия затвердевания приводят к различиям в расчётах fs-кривой (доля твёрдой фазы). Локальное распределение температур плавления и кристаллизации также неоднородно. Расчёт пористости связан с fs-кривой. Поэтому результаты расчёта пористости могут отличаться от стандартных. Расчёты при помощи MAGMAnonferrous, по сравнению со стандартными, являются более точными.

6 Дополнительные возможности

6.1 Расчёт локальных fs-кривых как функции температуры

MAGMA 5 Rel.5.2 позволяет построить локальные fs-кривые с помощью функции ,Picked Points'. Поступайте следующим образом:

1. Выберите на отливке ,Picked Points'.

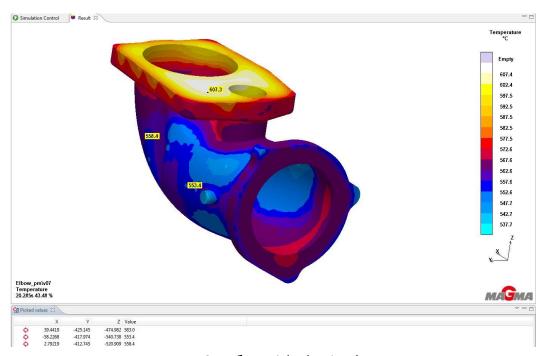


Рис. 9 Выбор ,Picked Points'

2. Кликните правой клавишей мыши по каталогу Fraction Solid > и пройдите по меню Curve Creation > Create Result Curve и выберите точки, для которых требуется построить кривые.

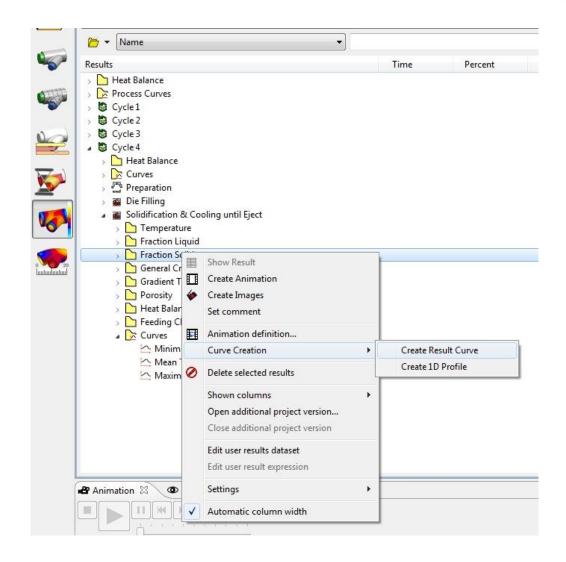


Рис. 10 Построение fs-кривой в ,Picked Points'

3. Для выбранных точек будет построена fs-кривая как функция времени. Для построения используются полученные результаты, т. е., если выводятся все 2,5% показателей затвердевания, то это означает, что будут получены 40 значений кристаллизации (40 точек на fs-кривой).

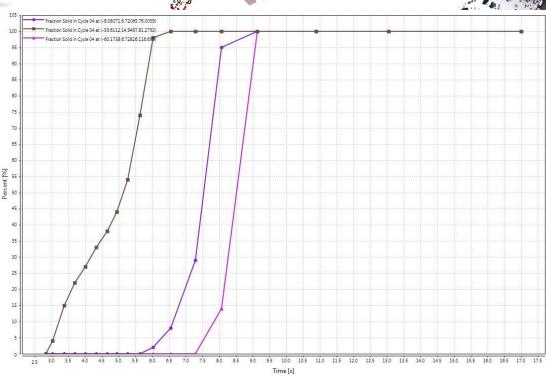


Рис. 11 Локальные fs-кривые как функция времени

- 4. Сохраните данные в меню 'Save as spreadsheed data' при помощи правой клавиши.
- 5. Повторите действия, предусмотренные пунктами 2-4 для показателей температуры.
- **6.** Импортируйте данные в Microsoft Excel и получите соответствующие кривые для fs=f(T).

6.2 Расчёт локальных температур кристаллизации

Для расчёта локальных температур кристаллизации используйте функцию ,User Results' (Дополнительная информация содержится в соответствующей документации).

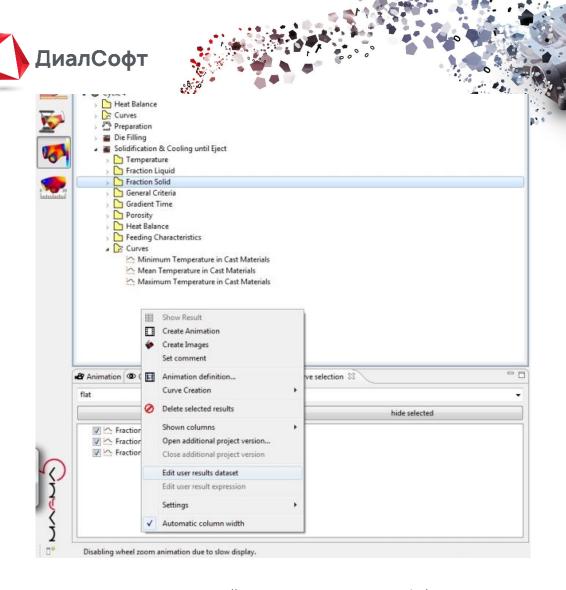


Рис. 12 Откройте пункт меню ,User Results'

Для запуска расчёта локальных температур кристаллизации поступайте следующим образом:

- 1. Правой клавишей выберите в интерфейсе результатов Edit user result dataset > Add.
- 2. В диалоговом окне "User Result' присвойте результату имя. В 'Expression' введите следующую последовательность:

Скорость затвердевания * Liquidus to Solidus – температура плавления (из базы данных для используемого сплава) * (-1)

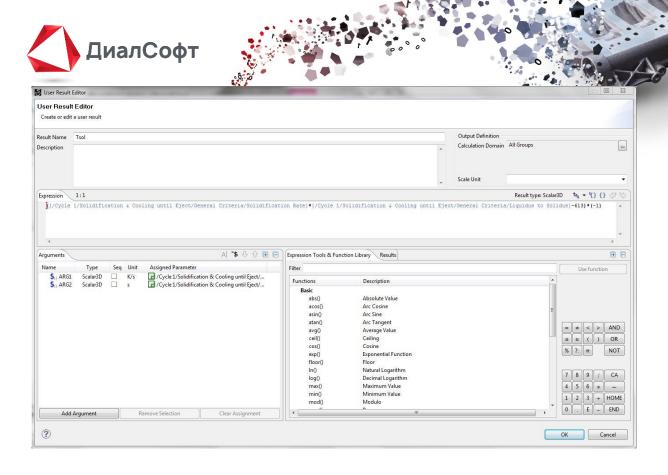


Рис. 13 Получение формулы локальных температур кристаллизации

- 3. Кликом по "Ok' запустите расчёт по формуле. Будет получен 3D-результат для локальных температур кристаллизации. Результаты могут различаться в зависимости от химического состава и локальных условий затвердевания.
- 4. В поле результатов появится каталог ,User Results'. Он содержит полученный 3Dрезультат.

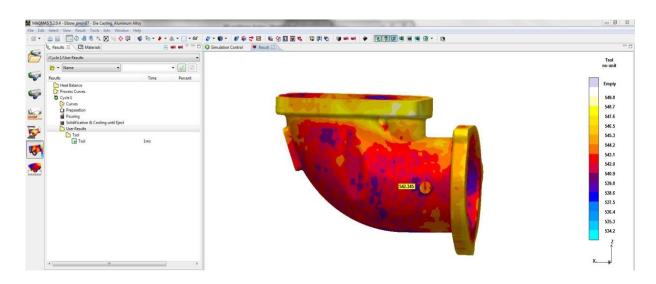


Рис. 14 ,User Result' – локальные температуры кристаллизации

. Sec. 1

7 Перечень иллюстраций

Рис. 1 Импорт химсостава сплава в собственную базу данных User-/ Projekt-Datenb	ank. 5
Рис 2 Изменение импортированных жанных	6
Рис 3 Подбор составляющих сплава	6
Рис. 4 Изменение химического состава непосредственно через интерфейс проце	ccopa
определений	7
Рис. 5 Предупреждения в случае несоблюдения пропорций элементов сплава	7
Рис. 6 Запуск расчёта структуры	8
Рис. 7 Кривая напряжений при растяжении по одной оси	9
Рис. 8 вывод результатов	11
Рис. 9 Выбор 'Picked Points'	13
Рис. 10 Построение fs-кривой в 'Picked Points'	15
Рис. 11 Локальные fs-кривые как функция времени	16
Рис. 12 Откройте пункт меню ,User Results'	17
Рис. 13 Составление формулы локальных температур кристаллизации	18
Puc. 14 ,User Result' – локальные температуры кристаллизации	18

Kontakt

Falls Sie weitere Fragen haben, können Sie sich gerne bei uns melden.

MAGMA Gießereitechnologie GmbH

Kackertstr. 11

52072 Aachen, Germany

Phone: +49 241 889010

Fax: +49 241 8890160

info@magmasoft.de

www.magmasoft.de

www.magmasoft.com

MAGMA Foundry Technologies, Inc.

10 N. Martingale Road, Suite 425

Schaumburg, Illinois 60173, USA

Phone: +1 847 9691001

Fax: +1 847 9691003

info@magmasoft.com

www.magmasoft.com

MAGMA Engenharia do Brasil Ltda.

Rua Vieira de Moraes, 420

10° Andar - Cj. 103/104

04617-010 São Paulo, Brazil

Phone: +55 11 55351381

Fax: +55 11 55337638

magma@magmasoft.com.br

www.magmasoft.com.br

MAGMA Engineering Korea Co., Ltd.

Suite 902, Hyundai 41 Tower

917-9 Mokdong, Yangchun-gu

Seoul 158-723, Korea

Phone: +82 2 21683575

Fax: +82 2 21683585

info@magmasoft.co.kr

www.magmasoft.co.kr

MAGMA Bilişim ve Teknoloji Hizmetleri Ltd.Şt

Kuzguncuk Mah. Paşalimanı Cad.

Boğaziçi Apt. No:112/B D:1 - Üsküdar

Istanbul, Turkey

Phone: +90 216 5575026

info@magmasoft.com.tr

www.magmasoft.com.tr

MAGMA Engineering Asia-Pacific Pte Ltd.

25 International Business Park

#03-76/79 German Centre

609916 Singapore

Phone: +65 65643435

Fax: +65 65640665

info@magmasoft.com.sg

www.magmasoft.com.sg

MAGMA Engineering Branch Office — MAGMA Engineering (Suzhou) Co., Ltd.

India

2nd floor Aparajita Arcade,

Flat no. # 3-5-900/1, Opp: Pantaloons

Store,

Himayath Nagar Main Road,

Hyderabad - 500 029, India

Phone: +91 40 66636516

Fax: +91 40 66636517

Room 615 CIQ Tower

No. 98 Suhui Road, Suzhou Industrial Park

Jiangsu Province, 215021 China

Phone: +86 512 62725820

Fax: +86 512 62725825

info@magmasoft-china.com

www.magmasoft-china.com

info@magmasoft.co.in www.magmasoft.co.in

MAGMA Gießereitechnologie GmbH

K Vinici 1256, studio 8 53002 Pardubice, Czech Republic

Phone: +42 0773 154664 P.Kotas@magmasoft.cz www.magmasoft.de